Skip to content

Models

Models package creates models that can be used to base other classes on.

  • Every model should be at least a pydantic BaseModel, but can also be a Step, or a StepOutput.
  • Every model is expected to be an ABC (Abstract Base Class)
  • Optionally a model can inherit ExtraParamsMixin that provides unpacking of kwargs into extra_params dict property removing need to create a dict before passing kwargs to a model initializer.

A Model class can be exceptionally handy when you need similar Pydantic models in multiple places, for example across Transformation and Reader classes.

koheesio.models.ListOfColumns module-attribute #

ListOfColumns = Annotated[
    Union[str, List[str]],
    BeforeValidator(_list_of_columns_validation),
]

Annotated type for a list of column names. Will ensure that there are no duplicate columns, empty strings, etc. In case an individual column is passed, the value will be coerced to a list.

koheesio.models.BaseModel #

Base model for all models.

Extends pydantic BaseModel with some additional configuration. To be used as a base class for all models in Koheesio instead of pydantic.BaseModel.

Additional methods and properties:
Fields#

Every Koheesio BaseModel has two predefined fields: name and description. These fields are used to provide a name and a description to the model.

  • name: This is the name of the Model. If not provided, it defaults to the class name.

  • description: This is the description of the Model. It has several default behaviors:

    • If not provided, it defaults to the docstring of the class.
    • If the docstring is not provided, it defaults to the name of the class.
    • For multi-line descriptions, it has the following behaviors:
      • Only the first non-empty line is used.
      • Empty lines are removed.
      • Only the first 3 lines are considered.
      • Only the first 120 characters are considered.
Validators#
  • _set_name_and_description: Set the name and description of the Model as per the rules mentioned above.
Properties#
  • log: Returns a logger with the name of the class.
Class Methods#
  • from_basemodel: Returns a new BaseModel instance based on the data of another BaseModel.
  • from_context: Creates BaseModel instance from a given Context.
  • from_dict: Creates BaseModel instance from a given dictionary.
  • from_json: Creates BaseModel instance from a given JSON string.
  • from_toml: Creates BaseModel object from a given toml file.
  • from_yaml: Creates BaseModel object from a given yaml file.
  • lazy: Constructs the model without doing validation.
Dunder Methods#
  • __add__: Allows to add two BaseModel instances together.
  • __enter__: Allows for using the model in a with-statement.
  • __exit__: Allows for using the model in a with-statement.
  • __setitem__: Set Item dunder method for BaseModel.
  • __getitem__: Get Item dunder method for BaseModel.
Instance Methods#
  • hasattr: Check if given key is present in the model.
  • get: Get an attribute of the model, but don't fail if not present.
  • merge: Merge key,value map with self.
  • set: Allows for subscribing / assigning to class[key].
  • to_context: Converts the BaseModel instance to a Context object.
  • to_dict: Converts the BaseModel instance to a dictionary.
  • to_json: Converts the BaseModel instance to a JSON string.
  • to_yaml: Converts the BaseModel instance to a YAML string.
Different Modes

This BaseModel class supports lazy mode. This means that validation of the items stored in the class can be called at will instead of being forced to run it upfront.

  • Normal mode: you need to know the values ahead of time

    normal_mode = YourOwnModel(a="foo", b=42)
    

  • Lazy mode: being able to defer the validation until later

    lazy_mode = YourOwnModel.lazy()
    lazy_mode.a = "foo"
    lazy_mode.b = 42
    lazy_mode.validate_output()
    
    The prime advantage of using lazy mode is that you don't have to know all your outputs up front, and can add them as they become available. All while still being able to validate that you have collected all your output at the end.

  • With statements: With statements are also allowed. The validate_output method from the earlier example will run upon exit of the with-statement.

    with YourOwnModel.lazy() as with_output:
        with_output.a = "foo"
        with_output.b = 42
    
    Note: that a lazy mode BaseModel object is required to work with a with-statement.

Examples:

from koheesio.models import BaseModel


class Person(BaseModel):
    name: str
    age: int


# Using the lazy method to create an instance without immediate validation
person = Person.lazy()

# Setting attributes
person.name = "John Doe"
person.age = 30

# Now we validate the instance
person.validate_output()

print(person)

In this example, the Person instance is created without immediate validation. The attributes name and age are set afterward. The validate_output method is then called to validate the instance.

Koheesio specific configuration:

Koheesio models are configured differently from Pydantic defaults. The following configuration is used:

  1. extra="allow"

    This setting allows for extra fields that are not specified in the model definition. If a field is present in the data but not in the model, it will not raise an error. Pydantic default is "ignore", which means that extra attributes are ignored.

  2. arbitrary_types_allowed=True

    This setting allows for fields in the model to be of any type. This is useful when you want to include fields in your model that are not standard Python types. Pydantic default is False, which means that fields must be of a standard Python type.

  3. populate_by_name=True

    This setting allows an aliased field to be populated by its name as given by the model attribute, as well as the alias. This was known as allow_population_by_field_name in pydantic v1. Pydantic default is False, which means that fields can only be populated by their alias.

  4. validate_assignment=False

    This setting determines whether the model should be revalidated when the data is changed. If set to True, every time a field is assigned a new value, the entire model is validated again.

    Pydantic default is (also) False, which means that the model is not revalidated when the data is changed. The default behavior of Pydantic is to validate the data when the model is created. In case the user changes the data after the model is created, the model is not revalidated.

  5. revalidate_instances="subclass-instances"

    This setting determines whether to revalidate models during validation if the instance is a subclass of the model. This is important as inheritance is used a lot in Koheesio. Pydantic default is never, which means that the model and dataclass instances are not revalidated during validation.

  6. validate_default=True

    This setting determines whether to validate default values during validation. When set to True, default values are checked during the validation process. We opt to set this to True, as we are attempting to make the sure that the data is valid prior to running / executing any Step. Pydantic default is False, which means that default values are not validated during validation.

  7. frozen=False

    This setting determines whether the model is immutable. If set to True, once a model is created, its fields cannot be changed. Pydantic default is also False, which means that the model is mutable.

  8. coerce_numbers_to_str=True

    This setting determines whether to convert number fields to strings. When set to True, enables automatic coercion of any Number type to str. Pydantic doesn't allow number types (int, float, Decimal) to be coerced as type str by default.

  9. use_enum_values=True

    This setting determines whether to use the values of Enum fields. If set to True, the actual value of the Enum is used instead of the reference. Pydantic default is False, which means that the reference to the Enum is used.

description class-attribute instance-attribute #

description: Optional[str] = Field(
    default=None, description="Description of the Model"
)

log property #

log: Logger

Returns a logger with the name of the class

model_config class-attribute instance-attribute #

model_config = ConfigDict(
    extra="allow",
    arbitrary_types_allowed=True,
    populate_by_name=True,
    validate_assignment=False,
    revalidate_instances="subclass-instances",
    validate_default=True,
    frozen=False,
    coerce_numbers_to_str=True,
    use_enum_values=True,
)

name class-attribute instance-attribute #

name: Optional[str] = Field(
    default=None, description="Name of the Model"
)

from_basemodel classmethod #

from_basemodel(
    basemodel: BaseModel, **kwargs
) -> InstanceOf[BaseModel]

Returns a new BaseModel instance based on the data of another BaseModel

Source code in src/koheesio/models/__init__.py
@classmethod
def from_basemodel(cls, basemodel: BaseModel, **kwargs) -> InstanceOf[BaseModel]:
    """Returns a new BaseModel instance based on the data of another BaseModel"""
    kwargs = {**basemodel.model_dump(), **kwargs}
    return cls(**kwargs)

from_context classmethod #

from_context(context: Context) -> BaseModel

Creates BaseModel instance from a given Context

You have to make sure that the Context object has the necessary attributes to create the model.

Examples:

class SomeStep(BaseModel):
    foo: str


context = Context(foo="bar")
some_step = SomeStep.from_context(context)
print(some_step.foo)  # prints 'bar'

Parameters:

Name Type Description Default
context Context
required

Returns:

Type Description
BaseModel
Source code in src/koheesio/models/__init__.py
@classmethod
def from_context(cls, context: Context) -> BaseModel:
    """Creates BaseModel instance from a given Context

    You have to make sure that the Context object has the necessary attributes to create the model.

    Examples
    --------
    ```python
    class SomeStep(BaseModel):
        foo: str


    context = Context(foo="bar")
    some_step = SomeStep.from_context(context)
    print(some_step.foo)  # prints 'bar'
    ```

    Parameters
    ----------
    context: Context

    Returns
    -------
    BaseModel
    """
    return cls(**context)

from_dict classmethod #

from_dict(data: Dict[str, Any]) -> BaseModel

Creates BaseModel instance from a given dictionary

Parameters:

Name Type Description Default
data Dict[str, Any]
required

Returns:

Type Description
BaseModel
Source code in src/koheesio/models/__init__.py
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> BaseModel:
    """Creates BaseModel instance from a given dictionary

    Parameters
    ----------
    data: Dict[str, Any]

    Returns
    -------
    BaseModel
    """
    return cls(**data)

from_json classmethod #

from_json(json_file_or_str: Union[str, Path]) -> BaseModel

Creates BaseModel instance from a given JSON string

BaseModel offloads the serialization and deserialization of the JSON string to Context class. Context uses jsonpickle library to serialize and deserialize the JSON string. This is done to allow for objects to be stored in the BaseModel object, which is not possible with the standard json library.

See Also

Context.from_json : Deserializes a JSON string to a Context object

Parameters:

Name Type Description Default
json_file_or_str Union[str, Path]

Pathlike string or Path that points to the json file or string containing json

required

Returns:

Type Description
BaseModel
Source code in src/koheesio/models/__init__.py
@classmethod
def from_json(cls, json_file_or_str: Union[str, Path]) -> BaseModel:
    """Creates BaseModel instance from a given JSON string

    BaseModel offloads the serialization and deserialization of the JSON string to Context class. Context uses
    jsonpickle library to serialize and deserialize the JSON string. This is done to allow for objects to be stored
    in the BaseModel object, which is not possible with the standard json library.

    See Also
    --------
    Context.from_json : Deserializes a JSON string to a Context object

    Parameters
    ----------
    json_file_or_str : Union[str, Path]
        Pathlike string or Path that points to the json file or string containing json

    Returns
    -------
    BaseModel
    """
    _context = Context.from_json(json_file_or_str)
    return cls.from_context(_context)

from_toml classmethod #

from_toml(toml_file_or_str: Union[str, Path]) -> BaseModel

Creates BaseModel object from a given toml file

Note: BaseModel offloads the serialization and deserialization of the TOML string to Context class.

Parameters:

Name Type Description Default
toml_file_or_str Union[str, Path]

Pathlike string or Path that points to the toml file, or string containing toml

required

Returns:

Type Description
BaseModel
Source code in src/koheesio/models/__init__.py
@classmethod
def from_toml(cls, toml_file_or_str: Union[str, Path]) -> BaseModel:
    """Creates BaseModel object from a given toml file

    Note: BaseModel offloads the serialization and deserialization of the TOML string to Context class.

    Parameters
    ----------
    toml_file_or_str: str or Path
        Pathlike string or Path that points to the toml file, or string containing toml

    Returns
    -------
    BaseModel
    """
    _context = Context.from_toml(toml_file_or_str)
    return cls.from_context(_context)

from_yaml classmethod #

from_yaml(yaml_file_or_str: str) -> BaseModel

Creates BaseModel object from a given yaml file

Note: BaseModel offloads the serialization and deserialization of the YAML string to Context class.

Parameters:

Name Type Description Default
yaml_file_or_str str

Pathlike string or Path that points to the yaml file, or string containing yaml

required

Returns:

Type Description
BaseModel
Source code in src/koheesio/models/__init__.py
@classmethod
def from_yaml(cls, yaml_file_or_str: str) -> BaseModel:
    """Creates BaseModel object from a given yaml file

    Note: BaseModel offloads the serialization and deserialization of the YAML string to Context class.

    Parameters
    ----------
    yaml_file_or_str: str or Path
        Pathlike string or Path that points to the yaml file, or string containing yaml

    Returns
    -------
    BaseModel
    """
    _context = Context.from_yaml(yaml_file_or_str)
    return cls.from_context(_context)

get #

get(key: str, default: Optional[Any] = None)

Get an attribute of the model, but don't fail if not present

Similar to dict.get()

Examples:

step_output = StepOutput(foo="bar")
step_output.get("foo")  # returns 'bar'
step_output.get("non_existent_key", "oops")  # returns 'oops'

Parameters:

Name Type Description Default
key str

name of the key to get

required
default Optional[Any]

Default value in case the attribute does not exist

None

Returns:

Type Description
Any

The value of the attribute

Source code in src/koheesio/models/__init__.py
def get(self, key: str, default: Optional[Any] = None):
    """Get an attribute of the model, but don't fail if not present

    Similar to dict.get()

    Examples
    --------
    ```python
    step_output = StepOutput(foo="bar")
    step_output.get("foo")  # returns 'bar'
    step_output.get("non_existent_key", "oops")  # returns 'oops'
    ```

    Parameters
    ----------
    key: str
        name of the key to get
    default: Optional[Any]
        Default value in case the attribute does not exist

    Returns
    -------
    Any
        The value of the attribute
    """
    if self.hasattr(key):
        return self.__getitem__(key)
    return default

hasattr #

hasattr(key: str) -> bool

Check if given key is present in the model

Parameters:

Name Type Description Default
key str
required

Returns:

Type Description
bool
Source code in src/koheesio/models/__init__.py
def hasattr(self, key: str) -> bool:
    """Check if given key is present in the model

    Parameters
    ----------
    key: str

    Returns
    -------
    bool
    """
    return hasattr(self, key)

lazy classmethod #

lazy()

Constructs the model without doing validation

Essentially an alias to BaseModel.construct()

Source code in src/koheesio/models/__init__.py
@classmethod
def lazy(cls):
    """Constructs the model without doing validation

    Essentially an alias to BaseModel.construct()
    """
    return cls.model_construct()

merge #

merge(other: Union[Dict, BaseModel])

Merge key,value map with self

Functionally similar to adding two dicts together; like running {**dict_a, **dict_b}.

Examples:

step_output = StepOutput(foo="bar")
step_output.merge(
    {"lorem": "ipsum"}
)  # step_output will now contain {'foo': 'bar', 'lorem': 'ipsum'}

Parameters:

Name Type Description Default
other Union[Dict, BaseModel]

Dict or another instance of a BaseModel class that will be added to self

required
Source code in src/koheesio/models/__init__.py
def merge(self, other: Union[Dict, BaseModel]):
    """Merge key,value map with self

    Functionally similar to adding two dicts together; like running `{**dict_a, **dict_b}`.

    Examples
    --------
    ```python
    step_output = StepOutput(foo="bar")
    step_output.merge(
        {"lorem": "ipsum"}
    )  # step_output will now contain {'foo': 'bar', 'lorem': 'ipsum'}
    ```

    Parameters
    ----------
    other: Union[Dict, BaseModel]
        Dict or another instance of a BaseModel class that will be added to self
    """
    if isinstance(other, BaseModel):
        other = other.model_dump()  # ensures we really have a dict

    for k, v in other.items():
        self.set(k, v)

    return self

set #

set(key: str, value: Any)

Allows for subscribing / assigning to class[key].

Examples:

step_output = StepOutput(foo="bar")
step_output.set(foo", "baz")  # overwrites 'foo' to be 'baz'

Parameters:

Name Type Description Default
key str

The key of the attribute to assign to

required
value Any

Value that should be assigned to the given key

required
Source code in src/koheesio/models/__init__.py
def set(self, key: str, value: Any):
    """Allows for subscribing / assigning to `class[key]`.

    Examples
    --------
    ```python
    step_output = StepOutput(foo="bar")
    step_output.set(foo", "baz")  # overwrites 'foo' to be 'baz'
    ```

    Parameters
    ----------
    key: str
        The key of the attribute to assign to
    value: Any
        Value that should be assigned to the given key
    """
    self.__setitem__(key, value)

to_context #

to_context() -> Context

Converts the BaseModel instance to a Context object

Returns:

Type Description
Context
Source code in src/koheesio/models/__init__.py
def to_context(self) -> Context:
    """Converts the BaseModel instance to a Context object

    Returns
    -------
    Context
    """
    return Context(**self.to_dict())

to_dict #

to_dict() -> Dict[str, Any]

Converts the BaseModel instance to a dictionary

Returns:

Type Description
Dict[str, Any]
Source code in src/koheesio/models/__init__.py
def to_dict(self) -> Dict[str, Any]:
    """Converts the BaseModel instance to a dictionary

    Returns
    -------
    Dict[str, Any]
    """
    return self.model_dump()

to_json #

to_json(pretty: bool = False)

Converts the BaseModel instance to a JSON string

BaseModel offloads the serialization and deserialization of the JSON string to Context class. Context uses jsonpickle library to serialize and deserialize the JSON string. This is done to allow for objects to be stored in the BaseModel object, which is not possible with the standard json library.

See Also

Context.to_json : Serializes a Context object to a JSON string

Parameters:

Name Type Description Default
pretty bool

Toggles whether to return a pretty json string or not

False

Returns:

Type Description
str

containing all parameters of the BaseModel instance

Source code in src/koheesio/models/__init__.py
def to_json(self, pretty: bool = False):
    """Converts the BaseModel instance to a JSON string

    BaseModel offloads the serialization and deserialization of the JSON string to Context class. Context uses
    jsonpickle library to serialize and deserialize the JSON string. This is done to allow for objects to be stored
    in the BaseModel object, which is not possible with the standard json library.

    See Also
    --------
    Context.to_json : Serializes a Context object to a JSON string

    Parameters
    ----------
    pretty : bool, optional, default=False
        Toggles whether to return a pretty json string or not

    Returns
    -------
    str
        containing all parameters of the BaseModel instance
    """
    _context = self.to_context()
    return _context.to_json(pretty=pretty)

to_yaml #

to_yaml(clean: bool = False) -> str

Converts the BaseModel instance to a YAML string

BaseModel offloads the serialization and deserialization of the YAML string to Context class.

Parameters:

Name Type Description Default
clean bool

Toggles whether to remove !!python/object:... from yaml or not. Default: False

False

Returns:

Type Description
str

containing all parameters of the BaseModel instance

Source code in src/koheesio/models/__init__.py
def to_yaml(self, clean: bool = False) -> str:
    """Converts the BaseModel instance to a YAML string

    BaseModel offloads the serialization and deserialization of the YAML string to Context class.

    Parameters
    ----------
    clean: bool
        Toggles whether to remove `!!python/object:...` from yaml or not.
        Default: False

    Returns
    -------
    str
        containing all parameters of the BaseModel instance
    """
    _context = self.to_context()
    return _context.to_yaml(clean=clean)

validate #

validate() -> BaseModel

Validate the BaseModel instance

This method is used to validate the BaseModel instance. It is used in conjunction with the lazy method to validate the instance after all the attributes have been set.

This method is intended to be used with the lazy method. The lazy method is used to create an instance of the BaseModel without immediate validation. The validate method is then used to validate the instance after.

Note: in the Pydantic BaseModel, the validate method throws a deprecated warning. This is because Pydantic recommends using the validate_model method instead. However, we are using the validate method here in a different context and a slightly different way.

Examples:

class FooModel(BaseModel):
    foo: str
    lorem: str


foo_model = FooModel.lazy()
foo_model.foo = "bar"
foo_model.lorem = "ipsum"
foo_model.validate()
In this example, the foo_model instance is created without immediate validation. The attributes foo and lorem are set afterward. The validate method is then called to validate the instance.

Returns:

Type Description
BaseModel

The BaseModel instance

Source code in src/koheesio/models/__init__.py
def validate(self) -> BaseModel:
    """Validate the BaseModel instance

    This method is used to validate the BaseModel instance. It is used in conjunction with the lazy method to
    validate the instance after all the attributes have been set.

    This method is intended to be used with the `lazy` method. The `lazy` method is used to create an instance of
    the BaseModel without immediate validation. The `validate` method is then used to validate the instance after.

    > Note: in the Pydantic BaseModel, the `validate` method throws a deprecated warning. This is because Pydantic
    recommends using the `validate_model` method instead. However, we are using the `validate` method here in a
    different context and a slightly different way.

    Examples
    --------
    ```python
    class FooModel(BaseModel):
        foo: str
        lorem: str


    foo_model = FooModel.lazy()
    foo_model.foo = "bar"
    foo_model.lorem = "ipsum"
    foo_model.validate()
    ```
    In this example, the `foo_model` instance is created without immediate validation. The attributes foo and lorem
    are set afterward. The `validate` method is then called to validate the instance.

    Returns
    -------
    BaseModel
        The BaseModel instance
    """
    return self.model_validate(self.model_dump())

koheesio.models.ExtraParamsMixin #

Mixin class that adds support for arbitrary keyword arguments to Pydantic models.

The keyword arguments are extracted from the model's values and moved to a params dictionary.

extra_params cached property #

extra_params: Dict[str, Any]

Extract params (passed as arbitrary kwargs) from values and move them to params dict

params class-attribute instance-attribute #

params: Dict[str, Any] = Field(default_factory=dict)