Classes¶
spark_expectations.utils.actions.SparkExpectationsActions
¶
This class implements/supports applying data quality rules on given dataframe and performing required action
Functions¶
action_on_rules(_context: SparkExpectationsContext, _df_dq: DataFrame, _input_count: int, _error_count: int = 0, _output_count: int = 0, _rule_type: Optional[str] = None, _row_dq_flag: bool = False, _source_agg_dq_flag: bool = False, _final_agg_dq_flag: bool = False, _source_query_dq_flag: bool = False, _final_query_dq_flag: bool = False) -> DataFrame
staticmethod
¶
This function takes necessary action set by the user on the rules and returns the dataframe with results Args: _context: Provide SparkExpectationsContext _df_dq: Input dataframe on which data quality rules need to be applied _input_count: input dataset count _error_count: error count in the dataset _output_count: output count in the dataset _rule_type: type of rule expectations _row_dq_flag: Mark it as True when dq running for row level expectations _source_agg_dq_flag: Mark it as True when dq running for agg level expectations on source dataframe _final_agg_dq_flag: Mark it as True when dq running for agg level expectations on final dataframe _source_query_dq_flag: Mark it as True when dq running for query level expectations on source dataframe _final_query_dq_flag: Mark it as True when dq running for query level expectations on final dataframe Returns: DataFrame: Returns a dataframe after dropping the error from the dataset
Source code in spark_expectations/utils/actions.py
agg_query_dq_detailed_result(_context: SparkExpectationsContext, _dq_rule: Dict[str, str], df: DataFrame, querydq_output: List[Tuple[str, str, str, str, Any, str, dict, str]], _source_dq_status: bool = False, _target_dq_status: bool = False) -> Any
staticmethod
¶
Executes detailed result aggregation for query-based data quality rules.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_context |
SparkExpectationsContext
|
The context object containing Spark session and other information. |
required |
_dq_rule |
Dict[str, str]
|
The dictionary containing the data quality rule details. |
required |
df |
DataFrame
|
The input DataFrame to be evaluated against the data quality rule. |
required |
querydq_output |
List[Tuple[str, str, str, str, Any, str, dict, str]]
|
|
required |
_source_dq_status |
bool
|
|
False
|
_target_dq_status |
bool
|
|
False
|
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
The querydq_output and detailed result of the data quality rule. |
Source code in spark_expectations/utils/actions.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
|
create_agg_dq_results(_context: SparkExpectationsContext, _df: DataFrame, _rule_type_name: str) -> Optional[List[Dict[str, str]]]
staticmethod
¶
This function helps to collect the aggregation results in to the list Args: _context: SparkContext object _df: dataframe which contains agg data quality results _rule_type_name: which determines the type of the rule
Returns: List with dict of agg rules property name and value
Source code in spark_expectations/utils/actions.py
create_rules_map(_rule_map: Dict[str, str]) -> Any
staticmethod
¶
This function helps to extract the selected rules properties and returns array of dict with key and value
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_rule_map |
Dict[str, str]
|
dict with rules properties |
required |
Returns: Array of tuple with expectations rule properties
Source code in spark_expectations/utils/actions.py
get_rule_is_active(_context: SparkExpectationsContext, rule: dict, _rule_type_name: str, _source_dq_enabled: bool = False, _target_dq_enabled: bool = False) -> bool
staticmethod
¶
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_context |
SparkExpectationsContext
|
SparkExpectationsContext class object |
required |
rule |
dict
|
dict with rule properties |
required |
_rule_type_name |
str
|
which determines the type of the rule |
required |
_source_dq_enabled |
bool
|
Mark it as True when dq running for source dataframe |
False
|
_target_dq_enabled |
bool
|
Mark it as True when dq running for target dataframe |
False
|
Returns:
Source code in spark_expectations/utils/actions.py
match_parentheses(dq_query_string: str) -> bool
staticmethod
¶
Check if the parentheses in the given query string are properly matched.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dq_query_string |
str
|
The query string to check. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if all parentheses are properly matched, False otherwise. |
Source code in spark_expectations/utils/actions.py
run_dq_rules(_context: SparkExpectationsContext, df: DataFrame, expectations: Dict[str, List[dict]], rule_type: str, _source_dq_enabled: bool = False, _target_dq_enabled: bool = False) -> DataFrame
staticmethod
¶
This function builds the expressions for the data quality rules and returns the dataframe with results
Parameters:
Name | Type | Description | Default |
---|---|---|---|
_context |
SparkExpectationsContext
|
Provide SparkExpectationsContext |
required |
df |
DataFrame
|
Input dataframe on which data quality rules need to be applied |
required |
expectations |
Dict[str, List[dict]]
|
Provide the dict which has all the rules |
required |
rule_type |
str
|
identifier for the type of rule to be applied in processing |
required |
_source_dq_enabled |
bool
|
Mark it as True when dq running for source dataframe |
False
|
_target_dq_enabled |
bool
|
Mark it as True when dq running for target dataframe |
False
|
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
Returns a dataframe with all the rules run the input dataframe |
Source code in spark_expectations/utils/actions.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
|