Skip to content

Classes

spark_expectations.utils.regulate_flow.SparkExpectationsRegulateFlow dataclass

This is helper class and implements/supports running data quality flow

Attributes

product_id: str instance-attribute

Functions

execute_dq_process(_context: SparkExpectationsContext, _actions: SparkExpectationsActions, _writer: SparkExpectationsWriter, _notification: SparkExpectationsNotify, expectations: Dict[str, List[dict]], table_name: str, _input_count: int = 0) -> Any staticmethod

This functions takes required static variable and returns the function Args: _context: SparkExpectationsContext class object _actions: SparkExpectationsActions class object _writer: SparkExpectationsWriter class object _notification: SparkExpectationsNotify class object expectations: expectations dictionary which contains rules table_name: name of the table _input_count: number of records in the source dataframe Returns: Any: returns function

Source code in spark_expectations/utils/regulate_flow.py
@staticmethod
def execute_dq_process(
    _context: SparkExpectationsContext,
    _actions: SparkExpectationsActions,
    _writer: SparkExpectationsWriter,
    _notification: SparkExpectationsNotify,
    expectations: Dict[str, List[dict]],
    table_name: str,
    _input_count: int = 0,
) -> Any:
    """
    This functions takes required static variable and returns the function
    Args:
        _context: SparkExpectationsContext class object
        _actions: SparkExpectationsActions class object
        _writer: SparkExpectationsWriter class object
        _notification: SparkExpectationsNotify class object
        expectations: expectations dictionary which contains rules
        table_name: name of the table
        _input_count: number of records in the source dataframe
    Returns:
           Any: returns function

    """

    def func_process(
        df: DataFrame,
        _rule_type: str,
        row_dq_flag: bool = False,
        source_agg_dq_flag: bool = False,
        final_agg_dq_flag: bool = False,
        source_query_dq_flag: bool = False,
        final_query_dq_flag: bool = False,
        error_count: int = 0,
        output_count: int = 0,
    ) -> Tuple[DataFrame, Optional[List[Dict[str, str]]], int, str]:
        """
        This inner function helps to process data quality rules based on different rules types
        Args:
            df: dataframe for data quality
            _rule_type: type of the rule
            row_dq_flag: default false, Mark True tp process row level data quality
            source_agg_dq_flag: default false, Mark True tp process agg level data quality on source dataframe
            final_agg_dq_flag: default false, Mark True tp process agg level data quality on final dataframe
            source_query_dq_flag: default false, Mark True tp process query level data quality on source dataframe
            final_query_dq_flag: default false, Mark True tp process query level data quality on final dataframe
            error_count: number of records error records (default zero)
            output_count: number of output records from expectations (default zero)

        Returns:
               Tuples with data frame which contains dq result, agg result in list, error count and
               status of the flow

        """
        try:
            _error_df: Optional[DataFrame] = None
            _error_count: int = error_count

            _running_rule_type_name = (
                _context.get_row_dq_rule_type_name
                if row_dq_flag
                else (
                    _context.get_agg_dq_rule_type_name
                    if (source_agg_dq_flag or final_agg_dq_flag)
                    else _context.get_query_dq_rule_type_name
                )
            )

            _log.info(
                "The data quality dataframe is getting created for expectations"
            )

            _df_dq: DataFrame = _actions.run_dq_rules(
                _context,
                df,
                expectations,
                _running_rule_type_name,
                _source_dq_enabled=(
                    source_query_dq_flag is True or source_agg_dq_flag is True
                ),
                _target_dq_enabled=(
                    final_query_dq_flag is True or final_agg_dq_flag is True
                ),
            )

            _log.info("The data quality dataframe is created for expectations")
            _context.print_dataframe_with_debugger(_df_dq)

            agg_dq_res = (
                _actions.create_agg_dq_results(
                    _context, _df_dq, _running_rule_type_name
                )
                if row_dq_flag is False
                else None
            )

            if row_dq_flag:
                _log.info("Writing error records into the table started")

                _error_count, _error_df = _writer.write_error_records_final(
                    _df_dq,
                    f"{table_name}_error",
                    _context.get_row_dq_rule_type_name,
                )
                if _context.get_summarised_row_dq_res:
                    _notification.notify_rules_exceeds_threshold(expectations)
                    _writer.generate_rules_exceeds_threshold(expectations)

                _context.print_dataframe_with_debugger(_error_df)

                # set the error count
                _context.set_error_count(_error_count)

            # set agg result
            if source_agg_dq_flag:
                _context.set_source_agg_dq_result(agg_dq_res)
            elif final_agg_dq_flag:
                _context.set_final_agg_dq_result(agg_dq_res)
            elif source_query_dq_flag:
                _context.set_source_query_dq_result(agg_dq_res)
            elif final_query_dq_flag:
                _context.set_final_query_dq_result(agg_dq_res)

            df = _actions.action_on_rules(
                _context,
                _error_df if row_dq_flag else _df_dq,
                _input_count,
                _error_count=_error_count,
                _output_count=output_count,
                _rule_type=_running_rule_type_name,
                _row_dq_flag=row_dq_flag,
                _source_agg_dq_flag=source_agg_dq_flag,
                _final_agg_dq_flag=final_agg_dq_flag,
                _source_query_dq_flag=source_query_dq_flag,
                _final_query_dq_flag=final_query_dq_flag,
            )
            _context.print_dataframe_with_debugger(df)

            return df, agg_dq_res, _error_count, "Passed"

        except Exception as e:
            raise SparkExpectationsMiscException(
                f"error occurred while executing func_process {e}"
            )

    return func_process